Abstract

Cells respond to changes in mechanical strains by varying their production of extracellular matrix macromolecules. Because differences in strain patterns between mitral valve leaflets and chordae tendineae have been linked to different quantities and types of glycosaminoglycans (GAGs), we investigated the effects of various strain conditions on GAG synthesis by valvular interstitial cells (VICs) using an in vitro 3-dimensional tissue-engineering model. VICs from leaflets or chordae were seeded within collagen gels and subjected to uniaxial or biaxial static tension for 1 week. GAGs synthesized within the collagen gels and secreted into the surrounding medium were analyzed using fluorophore-assisted carbohydrate electrophoresis. In constrained conditions, more 4-sulfated GAGs were retained within the collagen gel, whereas more hyaluronan was secreted into the surrounding medium. Selected GAG classes were found in significantly different proportions in collagen gels seeded with leaflet cells versus chordal cells. The only significant difference between uniaxial and biaxial regions was found for 6-sulfated GAGs in the gels seeded with chordal cells (p<0.05). This study suggests how mechanical loading may influence GAG production and localization in the remodeling of the mitral valve and has design implications for engineered tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call