Abstract

Force spectroscopy on single molecular machines generating piconewton forces is often performed using optical tweezers. Since trapping forces scale with the particle volume, piconewton-force measurements so far required micron-sized probes practically limiting the spatiotemporal resolution. Here, we have overcome this limit by developing high-refractive index germanium nanospheres as ultraresolution trapping probes. With a refractive index of 4.4, their trapping efficiency and maximum force per power is more than 10-fold higher compared to silica spheres of equal size. Therefore, the use ofgermanium allows piconewton-force measurements with nanometer sized probes. Using 70-nm-diameter germanium nanospheres as trappable optical probes (GeNTOPs), we could show that kinesin-1 walks with 4-nm-center-of-mass steps. In the long-term, the application of these novel high-precision GeNTOPs will provide new insight into the working mechanism of molecular machines and are promising candidates for other applications in microscopy, optoelectronics, and nanophotonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call