Abstract

A series of geopolymers were synthesized from fly and bottom ashes of a thermoelectrical power plant located in the Brazilian southern, aiming to add value for these wastes. The geopolymers were prepared in conventional and ultrasound-assisted ways and used to uptake Ag+, Co2+, Cu2+, and Ni2+ from aqueous solutions. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and N2 adsorption isotherms (BET and BJH methods). The results revealed that the geopolymers obtained from the conventional method presented slightly higher values of surface area and total pore volume. However, in some cases, the adsorption potential was better for the ultrasound synthesized materials. The geopolymers prepared from both methods presented good adsorption performance concerning Ag+ and Cu2+, Co2+ and Ni2+. The removal percentages were higher than 90%. In addition, the adsorption capacities were within the literature range. These findings show that the ultrasound technique is not essential to improve the geopolymers production process compared to the conventional process, which generated material with better performance for heavy metals adsorption. Besides, it was possible to aggregate value for fly and bottom ashes, generating promising adsorbent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.