Abstract
Freestanding blocks of silica and titania-silica aerogels were prepared by the sol-gel method. It is possible to prepare crack-free, titania-silica aerogels with high titanium content by a careful control of the synthesis conditions. Prehydrolysis, complexation and polymer addition were used to adjust the hydrolysis and condensation rates of the silicon and titanium alkoxide precursors. Photoactive anatase TiO2 nanocrystals with a large surface area (i.e., up to 300m2g−1) were crystallized from the gel network by the high-temperature ethanol supercritical drying, and the resulting aerogel blocks were gas permeable and display a transition-regime diffusion behavior. Pore and volume shrinkages were observed in samples prepared by ethanol supercritical drying when the titanium content was increased resulting in a lower flux. Adding Pluronic P123 creates ordered mesopore domains and produces large pore aerogels even at high titanium contents. The photocatalytic oxidation reaction of trichloroethylene was performed by flowing the reactant gas mixture through the UV-irradiated aerogel blocks with excellent results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have