Abstract

AbstractWe have fabricated top-gated field effect transistors (FETs) using graphene synthesized by chemical vapor deposition directly on a SiO2/Si substrate without using any transferring processes. Graphene was synthesized on an Fe catalyst film on the substrate at 650°C. The catalyst film was then etched after both ends of the graphene were fixed by source and drain electrodes, leaving the graphene channel connecting the two electrodes. Top-gated FETs were then made by covering graphene channels with HfO2 and depositing top electrodes. The drain current was successfully modulated by the gate voltage and exhibited the bipolar behavior that is characteristic of graphene. Also, it has been shown that graphene channels can sustain an electric current with a density of 107–108 /cm2. Our newly developed fabrication process paves a way to fabricate graphene transistors all over large substrates including Si and glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.