Abstract

Thickness-controlled growth of few-layer and multi-layer graphene was performed at 650 °C by thermal chemical vapor deposition, and top-gated field effect transistors (FETs) were fabricated directly on a large SiO2/Si substrate without graphene-transfer processes. Graphene was synthesized on patterned Fe films. The iron was subsequently etched after both ends of the graphene were fixed by source and drain electrodes, leaving the graphene channels bridging the electrodes all over the substrate. Top-gated FETs were then made after covering the channels with HfO2. The fabricated devices exhibit ambipolar behavior and can sustain a high-density current. The growth mechanism of graphene was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.