Abstract
Hexagonal boron nitride (hBN), a wide-gap two-dimensional (2D) insulator, is an ideal tunneling barrier for many applications because of the atomically flat surface, high crystalline quality, and high stability. Few-layer hBN with a thickness of 1-2 nm is an effective barrier for electron tunneling, but the preparation of few-layer hBN relies on mechanical exfoliation from bulk hBN crystals. Here, we report the large-area growth of few-layer hBN by chemical vapor deposition on ferromagnetic Ni-Fe thin films and its application to tunnel barriers of magnetic tunnel junction (MTJ) devices. Few-layer hBN sheets mainly consisting of two to three layers have been successfully synthesized on a Ni-Fe catalyst at a high growth temperature of 1200 °C. The MTJ devices were fabricated on as-grown hBN by using the Ni-Fe film as the bottom ferromagnetic electrode to avoid contamination and surface oxidation. We found that trilayer hBN gives a higher tunneling magnetoresistance (TMR) ratio than bilayer hBN, resulting in a high TMR ratio up to 10% at ∼10 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.