Abstract
Non-toxic Bi halides have great potential in the field of CO2 photoreduction, but strong charge localization limits their charge separation and transfer. In this study, a series of Cs3BiSbX9 (X=Cl, Br, I) perovskite quantum dots (PQDs) are synthesized by antisolvent recrystallization at room temperature, in which Cs3BiSbBr9 PQDs has high selectivity (94.51%) and yield (15.32µmolg-1h-1) of CO2 to CO. In situ DRIFTS and theoretical calculations suggest that the surface charge can be tailored by halogen modulation, allowing for the customization of intermediate species. The Bi─Br─Sb symmetric charge distribution induced by the halogen Br promotes the formation of b─HCOO and reduces the reaction energy barrier of the rate-limiting step, while the weak electronegativity of Cl and the high electronegativity of I leads to m─HCOO and ─COOH production, which are detrimental to CO generation. This work provides new insights into the design of halide alloy perovskites for CO2 photoreduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.