Abstract
To obtain industrialized poly(ethylene terephthalate) (PET) composites with highly efficient flame retardancy, a phosphorus-nitrogen (P-N) containing hyperbranched flame retardant additive was synthesized by 9,10-dihydro-9-oxa-10-phospho-phenanthrene-butyric acid (DDP) and tris(2-hydroxyethyl) isocyanurate (THEIC) through high temperature esterification known as hyperbranched DDP-THEIC (hbDT). The chemical structure of the synthesized hbDT was determined by FTIR, 1H NMR, 13C NMR, and GPC, etc. Subsequently, hbDT/PET composites were prepared by co-blending, and the effects of hbDT on the thermal stability, flame retardancy, combustion performance, and thermal degradation behavior of PET were explored to deeply analyze its flame retardant mechanism. The test results showed that hbDT was successfully synthesized, and that hbDT maintained thermal stability well with the required processing conditions of PET as retardant additives. The flame retardant efficiency of PET was clearly improved by the addition of hbDT via the synergistic flame-retardant effect of P and N elements. When the mass fraction of flame retardant was 5%, the LOI of the hbDT/PET composite increased to 30.2%, and the vertical combustion grade reached UL-94 V-0. Compared with pure PET, great decreased total heat release (decreased by 16.3%) and peak heat release rate (decreased by 54.9%) were exhibited. Finally, the flame retardant mechanism of hbDT/PET was supposed, and it was confirmed that retardant effect happened in both the gas phase and condensed phase. This study is expected to provide a new idea for the development of low toxic, environment-friendly and highly efficient flame retardant additive for polyesters in an industry scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.