Abstract

DNA-templated silver nanoclusters (DNA-AgNCs) are a unique class of bioinorganic nanomaterials. The optical properties and biological activities of DNA-AgNCs are readily modulated by the minor adjustments in the sequence or structure of the templating oligonucleotide. Excitation-emission matrix spectroscopy (EEMS) enables the fluorescence of compounds to be measured in a way that examines the entirety of a material's fluorescent properties. The use of EEMS for the characterization of DNA-AgNCs allows for multiple fluorescence peaks to be readily identified while providing the excitation and emission wavelengths of each signal. To assess the antibacterial and cytotoxic activities of DNA-AgNCs, two separate experimental approaches are used. Assessing the growth of bacteria over time is accomplished by measuring the optical density of the bacterial suspension with 600nm light, which is directly related to the number of bacteria in suspension. In order to evaluate the DNA-AgNCs for cytotoxic activity, cell viability assays which probe mitochondrial activity were used. Herein, we describe protocols for the characterization of the fluorescent, antibacterial, and cytotoxic activities of DNA-AgNCs using EEM, optical density measurements, and cell viability assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.