Abstract

Cu vanadate nanorods have been synthesized via the hydrothermal process using polymer polyvinyl pyrrolidone (PVP) as the surfactant. X‐ray diffraction (XRD) shows that the nanorods are composed of monoclinic Cu5V2O10 phase. Scanning electron microscopy (SEM) observation shows that the diameter and length of the nanorods are 50–300 nm and 3 μm, respectively. PVP concentration, hydrothermal temperature and duration time play essential roles in the formation and sizes of the Cu vanadate nanorods. A PVP‐assisted nucleation and crystal‐growth process is proposed to explain the formation of the Cu vanadate nanorods. Gentian violet (GV) is used to evaluate the photocatalytic activities of the Cu vanadate nanorods under solar light. The GV concentration clearly decreases with increasing irradiation time, and content of the Cu vanadate nanorods. GV solution with the concentration of 10 mg L−1 can be totally degraded under solar light irradiation for 4 h using 10 mg Cu vanadate nanorods. The Cu vanadate nanorods have good photocatalytic activities for the degradation of GV under solar light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call