Abstract

Submicron core/shell Ti/TiOx photocatalyst is successfully synthesized via single-mode magnetic microwave (SMMW) assisted direct oxidation of planetary ball-milled TiH2. The thickness of TiOx shell including highly concentrated defects such as Ti3+ and/or oxygen vacancies is controllable in the range from 6 to over 18 nm by varying the treatment time in the SMMW assisted reaction. In addition to its quite narrow optical bandgap (1.34–2.69 eV) and efficient visible-light absorption capacity, the submicron Ti/TiOx particle exhibits superior photocatalytic performance towards H2 production from water under both UV and visible-light irradiation to compare with a commercial TiO2 photocatalyst (P-25). Such excellent performance can be achieved by the synergetic effect of enhancement in visible light absorption capacity and photo-excited carrier separation because of the highly concentrated surface defects and the specific Ti/TiOx core/shell structure, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call