Abstract

MgFe2O4 spinel with abundant oxygen vacancy was synthesized by a simple precipitation method, and tested in photocatalytic reduction of CO2 with water vapor as reductant. A series of characterization including XRD, XPS, EPR, PL spectrum, UV–vis DRS and TPD-CO2 were performed to investigate the influence of calcination temperature on morphology, optical and electronic properties of MgFe2O4 spinel. The results demonstrated that the oxygen vacancy concentration increases first and then decreases with the increase of calcination temperature. By introducing oxygen vacancies, the recombination of photogenerated electron-hole pairs was significantly suppressed, visible light absorption and chemisorption capacity of CO2 were dramatically boosted. Mg-Fe-750 with the richest oxygen vacancies exhibits the highest photocatalytic activity, for which the production rate of CO and H2 was 24.4 and 34.3 μmol/gcat/h, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call