Abstract

Oxide-based nanoparticles have been studied extensively due to their unique optical and passivation properties, which are significantly distinct from those of bulk materials. The present study aimed to synthesize copper oxide nanoparticles through the co-precipitation method. The adequate substitution of sodium hydroxide (NaOH) into CuO is analyzed by different characterizations, i.e., X-ray diffraction (XRD), Scanning Electron Microscope (SEM), UV–visible spectroscopy (UV–visible), Fourier transform infrared (FTIR), and EDX. The X-ray diffraction spectra indicate that the prepared copper oxide nanoparticles were crystalline, nano-sized, and highly pure. The SEM micrographs showed that nanoparticles were spherical at lower contents of NaOH, while at higher contents, agglomeration of nanoparticles occurs, and the grain size changes. The decreased optical bandgap of the nanoparticles was observed due to different concentrations of sodium hydroxide. The crystalline size and strain values were also determined through the Williamson-Hall method. The compressive micro-stain in CuO materials confirms the negative slope value of the line fit in the W–H Plot. From this study, we concluded that synthesized CuO NPs have the potential to combine CuO materials with antireflecting films for improved optical performance in optoelectronic devices, precisely current density properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.