Abstract

Cobalt oxides and/or manganese and their com-position based on cerium and zirconium oxides (CeO2 : ZrO2 = 1:1 mol.%) with a content of up to 20 wt. % are synthesized. Samples of both individual oxides and complex oxide compositions were prepared by precipitation from solutions of am-monia (room temperature) or hexamethylenetet-ramine (80–90 °C) followed by heat treatment. Results of DTA show, that due to the calcination at 400 ° C (2 h), the obtained samples lose 17–22 wt. % corresponding to 2–3.8 molecules of water. According to the X-ray powder analysis, initially are formed hydroxide compounds of cobalt (CoO· xH2O) and manganese (MnO2·yН2О), which, after being heated at 400 °C for 2 hours, are converted into mixed oxides from the composition of Co3O4 and Mn3O4. The average particle size calculated by the Sherer equation is 18–30 nm.
 In the study of catalytic activity on the example of the reaction of the hydrogen peroxide decomposition, it was found that the obtained samples from the solution of GMTA show a greater ability to catalytically decompose hydrogen peroxide compared to samples obtained from the ammonia solution. In this case, the catalytic activity of dried samples is twice as high as roasted, regardless of the method of obtaining. Samples of oxide compo-sitions with deposited 5–10 wt. % of Ce–Zr oxides (1:1) exhibit the highest ability to decompose H2O2. In this case, samples of compositions obtained from the solution of GMTA, have a prolonged catalytic action, and when precipitation in the solution of ammonia, the reaction takes place quite actively during 4–5 days.
 Compositions formed from co-deposited or mechanically mixed hydroxocompounds of cobalt and manganese with 5 wt. % of CeO2–ZrO2 (1:1) deposited on them have different catalytic activity. In the case of mechanically mixed, it is 30% lower and with subsequent calcination at 400 °C, it is reduced by almost half, and with co-precipitation, the activity is quite high and does not change with heat treatment. In the case of obtaining samples of Co–Mn with Ce–Zr (1:1) deposited on them in excess of 10 wt. % the catalytic activity of the samples dried at 80 °C is equal to the activity of the co-deposited hydroxocompounds of cobalt and manganese and the calcination at 400 °C it reduces it by 30 %.
 The best ability for catalysis was found in samples CoO·xH2O + 5 wt. % MnO2·yН2О, СоO×хН2О + 10 wt. % CeO2:ZrO2 and СоO×хН2О–MnO2×yН2О, precipitated with the GMTA solution and dried at 80 °C. The besser catalytic properties revealed a sample of СоО×хН2О + 10 wt. % CeO2:ZrO2, which with-out stirring is capable of decomposing 1.2–1.4 dm3/g of hydrogen peroxide with a rapid reaction and in the experiment the volume of H2O2 reacted was 3.4 dm3/g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call