Abstract
Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells were introduced by co-polymerizing styrene with the cationic monomers (vinylbenzyl)trimethylammonium chloride (VBTMAC), [(2-methacryloyloxy)ethyl] trimethylammonium chloride (METMAC) and [(2-(acryloyloxy)ethyl] trimethylammonium chloride (AETMAC) onto the polystyrene cores. The cationic monomer AETMAC, undocumented to our knowledge in colloid synthesis, produced the best cationic shells and could be incorporated at much higher concentrations in the shell compared to the commonly used VBTMAC and METMAC, which yielded undesired polyelectrolyte side products already at relatively low cationic monomer concentrations. In shell formation, feed concentrations of AETMAC between 1.3 mol% (2.4 wt%) and 10.7 mol% (20 wt%) in styrene could be employed, allowing us to control colloid surface charge density over a wide range. The influence of various polymerization parameters (initiator concentration, cross-linking agent, and ionic strength) on the co-polymerization process with AETMAC is discussed. Core-shell particles were characterized using HR-SEM, potentiometric titration and zeta potential measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.