Abstract
Some recent results concerning the synthesis of carbon nanostructures in a thermal plasma generating by a plasma torch are presented. Several tests were carried out in different operational conditions. The plasma was formed with argon and different gas mixtures of argon-acetylene or argon-methane to which some catalyst materials (ferrocene and cerium oxide) were added. These catalysts were introduced into the plasma in a solid (powder) or/and a gaseous state. Their feeding rate into the plasma jet was fixed along with some other operating conditions such as plasma power, gas flow rate and reactor pressure. The principal main feature observed was a short reaction time so that each test lasted for no longer than 5 minutes. The solid products obtained were collected and prepared for following analyses. The products were examined using XRD and TEM techniques in order to characterize the morphological structure of their samples. The spatial distribution of temperature in the plasma was evaluated by in-situ emission spectroscopy. The self-absorption was taken into account by simulating an integrated radiation in relation to the Swan band d 3 ƒg i! a 3 ƒu(0,0), emitted by the C2 radical. Also, the exhaust gases were characterized by gas chromatography during each test.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have