Abstract

Carbon fiber is known for being lightweight and adaptable, making it useful for various current and future applications. However, to broaden the use of carbon fibers beyond niche applications, production costs must be lowered. A potential approach to achieving this is by using more affordable raw materials, such as lignin, which is renewable, cost-effective, and widely available compared with the materials commonly used in industry today. This study explores the impact of metal ions on the quality of carbon fiber derived from lignin, focusing on its mechanical and electrochemical properties and morphology. The effect of a specific metal ion (Ni(NO3)2·6H2O) was examined by incorporating it into the spinning solution. The carbonization stage of the fiber was conducted at temperatures of 800, 900, and 1000 °C in an inert atmosphere. Scanning electron microscopy (SEM) analysis showed no defects or damage in any of the fibers. Therefore, it was concluded that moderate concentrations of Ni2+ ions in the fibers do not influence the stabilization or carbonization processes, thus leaving the mechanical properties of the final carbon fiber unchanged. These carbon nanofibers were also tested as a sustainable alternative to the non-renewable materials used in electrodes for energy storage and conversion devices, such as supercapacitors. Electrochemical performance was assessed in a 6 M KOH solution using a two-electrode cell configuration. Galvanostatic charge–discharge tests were performed at different current densities (0.1, 0.25, 0.5, 1.0, and 2.0 A g−1). The specific capacitance of the carbon nanofibers was determined from CVA data at various scan rates: 5, 10, 20, 40, 80, and 160 mV s−1. The results indicated that at 0.1 A g−1, the capacitance reached 108 F g−1, and at a scan rate of 5 mV s−1, it was 91 F g−1. The innovation of this work lies in its use of lignin, a renewable and widely available material, to produce carbon fibers, reducing costs compared with traditional methods. Additionally, the incorporation of nickel ions enhances the electrochemical properties of the fibers for supercapacitor applications without compromising their mechanical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.