Abstract
To date, composite materials, such as polymer concrete, have found wide application in various industries due to their unique properties combining high strength, resistance to aggressive media and durability. Improving the performance characteristics of polymer concrete is an important task aimed at expanding the areas of its application. One of the promising methods of increasing the strength of this material is the use of various fillers. In this paper, the effect of fillers, based on carbon and basalt fibres, on the mechanical properties of polymer concrete was investigated. The polymer concrete was made of the following components: rubble stone, sand, quartz flour and polyester resin. During the experimental work, the amount of carbon and basalt fibres in the polymer concrete mixture varied from 0 to 6%. Bending and compressive strength tests showed that the addition of carbon and basalt fibres increased these properties. The highest bending and compressive strengths were achieved when carbon fibre contents were up to 1.5%, while basalt fibres provided the highest strengths in the case of around 2%. These results confirmed that carbon fibres had a higher efficiency in strengthening polymer concrete compared to that of basalt fibres. This could be explained by the fact that carbon fibres had a higher tensile strength and modulus of elasticity, which allowed them to better redistribute loads within the composite material. The fibre length for carbon fibre, which gave the maximum increase in properties, was 10–15 mm. For basalt fibre, the maximum bending strength was reached at 20 mm and compressive strength at 10 mm. Increasing the content of carbon fibre above 2% and basalt fibre above 1.5% did not give further increase in mechanical properties. In conclusion, it could be stated that the use of carbon fibres as fillers offered significant advantages in strengthening polymer concrete, opening up opportunities for its use in more demanding conditions and in a wider range of industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.