Abstract

C8-N-arylamine adducts of 2'-deoxyguanosine (2'-dG) play an important role in the induction of the chemical carcinogenesis caused by aromatic amines. C8-N-acetyl-N-arylamine dG adducts that differ in their substitution pattern in the aniline moiety were converted by cycloSal technology into the corresponding C8-N-acetyl-N-arylamine-2'-deoxyguanosine-5'-triphosphates and C8-NH-arylamine-2'-deoxyguanosine-5'-triphosphates. Their conformation preference has been investigated by NOE spectroscopy and DFT calculations. The substrate properties of the C8-dG adducts were studied in primer-extension assays by using Klenow fragment exo(-) of Escherichia coli DNA polymerase I and human DNA polymerase β. It was shown that the incorporation was independent of the substitution pattern in the aryl moiety and the N-acetyl group. Although the triphosphates were poor substrates for the human polymerases, they were incorporated twice before the termination of the elongation process occurred; this might demonstrate the importance of C8-N-arylamine-2'-deoxyguanosine-5'-triphosphates in chemical carcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call