Abstract

The glycan β-galactosamine-(1-4)-3- O-methyl- d-chiro-inositol, called INS-2, was previously isolated from liver as a putative second messenger–modulator for insulin. Synthetic INS-2 injected intravenously in rats is both insulin-mimetic and insulin-sensitizing. This bioactivity is attributed to allosteric activation of pyruvate dehydrogenase phosphatase (PDHP) and protein phosphatase 2Cα (PP2Cα). Towards identification of potentially metabolically stable analogues of INS-2 and illumination of the mechanism of enzymatic activation, C-INS-2, the exact C-glycoside of INS-2, and C-INS-2-OH the deaminated analog of C-INS-2, were synthesized and their activity against these two enzymes evaluated. C-INS-2 activates PDHP comparable to INS-2, but failed to activate PP2Cα. C-INS-2-OH was inactive against both phosphatases. These results and modeling of INS-2, C-INS-2 and C-INS-2-OH into the 3D structure of PDHP and PP2Cα, suggest that INS-2 binds to distinctive sites on the two different phosphatases to activate insulin signaling. Thus the carbon analog could selectively favor glucose disposal via oxidative pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.