Abstract

Low-cost alginate gels of activated carbons were prepared, which were derived from the peels of banana and sweet lime. The synthesized carbon was activated and immobilized on alginate, producing its gel. These gels were categorized according to their methods of drying, in which air drying, freeze drying, and supercritical drying led to the formation of xerogels, cryogels, and aerogels, respectively. The gels were used for adsorption of heavy metals from their aqueous solution. The heavy metals that were targeted for removal were Pb(II), Cd(II), Cr(VI), As(III), and Hg(II). Among all the adsorbents, the alginate cryogel of sweet lime-derived activated carbon (SLACC) showed the highest removal percentage of heavy metals, and thus, it was used for batch study. The adsorption of heavy metals by SLACC was checked at different times, pH values, adsorbent doses, temperatures, and adsorbate concentrations. The study revealed that the pseudo-second-order model best described the kinetic study, while the adsorption followed the Freundlich isotherm. SLACC showed maximum adsorption capacities (q cal) of 3.71, 4.22, 20.04, 7.31, and 4.37 mg/g for Cr, Cd, Pb, As, and Hg, respectively, when 20 mg of SLACC was used for the removal of 4 ppm concentration of the targeted heavy metals from their 20 mL solution. Based on the thermodynamic study, it was found that the adsorption was spontaneous and exothermic. Furthermore, the adsorbent was also used on real water samples and showed up to 90% removal efficiency for these targeted heavy metals. SLACC was regenerated with 0.1 M ethylenediaminetetraacetic acid (EDTA) solution and reused for five cycles, in which the percentage removal of heavy metals was more than 50% till the fourth cycle. Furthermore, the leaching study showed that no toxic elements had leached from SLACC into water, making it a safe adsorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.