Abstract

ABSTRACT This study focuses on the probable use of carbonized char prepared from PET plastic bottles for heavy metals (HMs) adsorption (Cd2+, Pb2+, Cu2+, and Zn2+). The prepared adsorbent is characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR). Batch adsorption experiments were conducted with the influencing of different operational conditions: contact time (1–180 min), adsorbate concentration (25–300 mg/L), adsorbent dose (0.5–6 g/L), pH (3–7), and temperature (25–60 ºC). High coefficient value [Cd2+ (R2 = 0.99), Pb2+ (R2 = 0.97), Cu2+ (R2 = 0.94), and Zn2+ (R2 = 0.98)] of process optimization model suggest that this model was significant, where pH and adsorbent dose expressively stimulus removal efficiency including 86.68, 73.66, 67.10, and 57.04% for Cd2+, Pb2+, Cu2+, and Zn2+ at pH (7), respectively. Furthermore, ANN and BB-RSM revealed a good association between the tested and projected values. The maximum monolayer adsorption capacity of Cd2+, Pb2+, Cu2+, and Zn2+ was 263.157, 78.740, 196.078, and 84.745 mg/g, respectively. Pseudo-second-order was the well-suited kinetics, where Langmuir and Freundlich isotherm could explain better for equilibrium adsorption data. Thermodynamic study shows HMs adsorption is favorable, exothermic, and spontaneous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.