Abstract

A series of bimetallic Pd/Pt truncated nanocube catalysts with similar morphologies and particle sizes but different platinum contents were successfully synthesized using a colloidal method without using any capping agents. Their hydrogenation properties were systematically studied and compared with their monometallic Pd or Pt nanocrystal counterparts. The results of EDX-mapping and line scanning show that platinum was relatively uniformly distributed on the surface of the Pd/Pt bimetallic nanocrystals and was not selectively deposited at the corners of the nanocrystals. The results of the selective hydrogenation of acetophenone demonstrate that the hydrogenation rate and the carbonyl selectivity of bimetallic Pd/Pt truncated nanocube catalysts are generally much higher than those of their monometallic Pd or Pt nanocrystal counterparts. It was found that the electronic interaction between palladium and platinum in the bimetallic Pd/Pt truncated nanocube catalysts and the corresponding hydrogenation activity in the selective hydrogenation of acetophenone are closely related to the molar ratio between platinum and palladium and the thickness of the platinum layer in the bimetallic Pd/Pt truncated nanocube catalyst. With an increase in the Pt/Pd molar ratio in the bimetallic Pd/Pt truncated nanocube catalysts, the activity and carbonyl selectivity in the acetophenone hydrogenation reaction increase first, reach a maximum when the molar ratio of Pt/Pd is 0.02 and the theoretical thickness of Pt is 1.3 atomic layers, and then decrease with a further increase in the Pt/Pd ratio. The hydrogenation rate of acetophenone on the Pd/Pt0.02 catalyst reaches 1.07 × 103 mmol·h−1·gcat.−1, which is 79 and 75 times larger than that of the monometallic Pd and Pt nanocrystal catalysts, respectively. The maximum yield of the target product 1-phenylethanol on the Pd/Pt0.02 truncated nanocube catalyst reaches 97.2%, which is 6.6% and 16.7% higher than that of the monometallic Pd and Pt nanocrystal catalysts, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.