Abstract
Methyl mercaptan is a sulfur-based chemical found as a co-product in produced natural gas and it causes corrosion in pipelines, storage tanks, catalysts, and solid adsorption beds. To improve the quality of methane produced, researchers have studied the use of metal oxides and aluminum silicates as catalysts for removing mercaptan. However, there are restrictive limitations on the efficiency of metal oxides or aluminum silicates as adsorbents for this application. Therefore, this study investigated the performance of these materials in a fixed-bed reactor with simulated natural gas streams under various operating conditions. The testing procedure includes a detailed assessment of the adsorbent/catalysts by several techniques, such as Braeuer–Emmett–Teller (BET), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectrometry (EDS), and X-ray Photoelectron Spectroscopy. The results revealed that metal oxides such as copper, manganese, and zinc performed well in methyl mercaptan elimination. The addition of manganese, copper, and zinc oxides to the aluminum silicate surface resulted in a sulfur capacity of 1226 mg S/g of catalyst. These findings provide critical insights for the development of catalysts that combine metal oxides to increase adsorption while reducing the production of byproducts like dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) during methyl mercaptan removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.