Abstract

In this work, Au–Ag nanoparticles (Au–Ag-bi-MNPs) have been prepared on amine functionalized Si-MCM-41 (NH 2–Si-MCM-41) particles through a reduction of AgNO 3 and HAuCl 4 by NaBH 4 at ambient conditions. Au–Ag-bi-MNPs loaded on the NH2–Si-MCM-41, provide a good biocompatible surface for immobilization of the enzyme alkaline protease. This immobilization, presumably due to bonding between core shell nanoparticles and OH in serine 183 in alkaline protease seems to be of an ionic exchange nature. We found that the alkaline protease immobilized on the Au–Ag-bi-MNPs/Si-MCM-41 is an active biocatalyst, stable at different pH and temperature. The bio catalytic activity of free alkaline protease in solution was 64 U/mg (Units per milligram), whereas that of the alkaline protease immobilized on Au–Ag-bi-MNPs/Si-MCM-41 was 75 U/mg. This improvement of the biocatalytic activity may be due to a really increased activity per molecule of immobilized enzyme or to a purification of the enzyme. The alkaline protease molecules immobilized on the (Au–Ag)/ NH 2-MCM-41 surface retained as much as 80% of the catalytic activity recorded at pH=8, and showed significant catalytic activity of alkaline protease in the bioconjugate material. The biocatalytic materials were easily separated from the reaction medium by mild centrifugation and exhibits excellent reuse and stability characteristics over four successive cycles. The optimum temperature ranged from 35 ∘C–55 ∘C and pH=8 for bioactivity of the alkaline protease in the assembly system was observed to be higher than that of the free enzyme in solution. The enzyme biocatalytic activity was monitored by UV-visible spectroscopy. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and dispersive analysis of X-RAY (EDAX) were used to characterize the size and morphology of the prepared materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call