Abstract

Alkaline and myofibrillar protease activities of rectus femoris, soleus, and tibialis anterior muscles and the pooled sample of gastrocnemius and plantaris muscles were analyzed in male NMRI-mice during a running-training program of 3, 10, or 20 daily 1-h sessions. The activity of citrate synthase increased during the endurance training, reflecting the increased oxidative capacity of skeletal muscles. The activities of alkaline and myofibrillar proteases continually decreased in the course of the training program in all muscles studied. Instead, the activity of beta-glucuronidase (a marker of lysosomal hydrolases) increased in all muscles. The highest activities were observed at the beginning of the training program. Present results, together with our earlier observations, show that the type of training, running as opposed to swimming, modulates the training responses in alkaline protease activities. Further, diverse adaptations in the activities of alkaline proteases and a lysosomal hydrolase suggest difference in the function of different proteolytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.