Abstract
Zeolite BEA with SiO2/Al2O3 ratios ranging from 30 to 740 were crystallized at 413 and 453 K by the dry gel conversion technique. The particle size of the products increased with increasing SiO2/Al2O3 ratio as well as with increasing crystallization temperature. In as-synthesized BEA, the TEA+ ions interacting with Si-O− decomposed between 473 and 673 K and those interacting with Al-O− were cleaved between 673 and 798 K. During their elimination, the TEA+ ions interacting with Al-O− underwent higher degradation than those interacting with Si-O−. Chemical compositions showed the least influence on the fractions of decomposition product during the elimination between 473 and 673 K. The framework of H-BEA and NH4-BEA zeolites with SiO2/Al2O3 ratios ranging from 400 to 740 were stable even at 1373 K, whereas H-BEA with SiO2/Al2O3 = 30 was stable only up to 1173 K and became amorphous when calcined at 1373 K. After calcination at 1373 K, Na-BEA with SiO2/Al2O3 = 400 and 730 were transformed to tridymite (dense phase) whereas that with SiO2/Al2O3 = 30 became amorphous. The elimination of Na+ ions is necessary to have a BEA remain stable above 1173 K.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have