Abstract

Along with advances in life science and clinical research, there has been an increasing interest in enrichment technologies for proteins with post-translational modifications. Here we report a new platform to enrich and detect phosphopeptides using the hybrid nanofibers synthesized from bacterial cellulose (BC). Hydrothermal reactions have successfully been employed to synthesize BC@mTiO2 hybrid nanofibers. The morphology of the hybrid nanofibers has been characterized in detail. They are featured with tremendously increased specific surface areas and appropriate pore size for adsorption of phosphopeptides with high efficiency. The BC@mTiO2 tips allow improving both the sensitivity and selectivity of mass spectrometry by nearly two orders of magnitude compared with the commercial tips. As a robust and highly cost-effective platform, our approach has provided a nanotechnology invention to enrich and detect phosphorylated proteins with important biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call