Abstract

Non-spore-forming bacteria of the genera Arthrobacter and Micrococcus, isolated from permafrost subsoil, were found to produce greater amounts of the d1 extracellular factor than closely related collection strains isolated from soil. The effect of this factor, responsible for cell transition to anabiosis, was not species-specific. Thus, the d1 crude preparation isolated from the culture liquid of the permafrost isolate Arthrobacter globiformis 245 produced an effect on the collection strain Arthrobacter globiformis B-1112 and also on Micrococcus luteus and Bacillus cereus. The crude d1 preparation from the permafrost isolate of Arthrobacter differed from the chemical analogue of this factor, 4n-hexylresorcinol, in the level of the induced cell response, which may have resulted from different cell sensitivity to various homologs of alkylhydroxybenzenes contained in the d1 preparation. Thus, additional evidence was obtained indicating that autoregulation of bacterial growth and development is implemented at the level of intercellular interactions in microbial communities. Abundant production of the d1 anabiosis-inducing factors by bacteria isolated from permafrost subsoil is probably a result of special antistress mechanisms responsible for the survival of these bacteria under extreme conditions of natural deep cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.