Abstract

Microbial communities are essential for human and environmental health, often forming complex interaction networks responsible for driving ecosystem processes affecting their local environment and their hosts. Disturbances of these communities can lead to loss of interactions and thereby important ecosystem functionality. The research on what drives interactions in microbial communities is still in its infancy, and much information has been gained from the study of model communities. One purpose of using these model microbial communities is that they can be cultured under controlled conditions. Yet, it is not well known how fluctuations of abiotic factors such as temperature affect their interaction networks. In this work, we have studied the effect of temperature on interactions between the members of the model community THOR, which consists of three bacterial species: Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus. Our results show that the community-intrinsic properties resulting from their interspecies interactions are highly dependent on incubation temperature. We also found that THOR biofilms had remarkably different abundances of their members when grown at 11, 18, and 25°C. The results suggest that the sensitivity of community interactions to changes in temperature is influenced, but not completely dictated, by different growth rates of the individual members at different temperatures. Our findings likely extend to other microbial communities and environmental parameters. Thus, temperature could affect community stability and may influence diverse processes including soil productivity, bioprocessing, and disease suppression. Moreover, to establish reproducibility between laboratories working with microbial model communities, it is crucial to ensure experimental stability, including carefully managed temperature conditions.

Highlights

  • Microbial communities are assemblages of microbes that co-inhabit the same environment

  • We quantified the total amount of surface-attached biofilm produced by the THOR model microbial community using a crystal violet assay, in which the community was incubated at temperatures flanking room temperature and compared to the amount of biofilm formed by P. koreensis alone (Figure 1A)

  • We show that this increased biofilm formation is not the result of the addition of more cells to the biofilm by B. cereus or F. johnsoniae

Read more

Summary

Introduction

Microbial communities are assemblages of microbes that co-inhabit the same environment. They are ubiquitous among all biotopes and are present on, and in, all macroorganisms (Finlay and Clarke, 1999). Microbial communities affect human health more directly, through establishment of symbiotic and commensal bacteria in, for example, the human gut. These communities have intricate relationships between themselves and with the host, extending as far as being able to modulate the availability of neurotransmitters to the host (Strandwitz, 2018). Microbial communities have been shown to block the establishment of pathogens in the gut microbiome, acting as a barrier that prevents potential pathogenic bacteria to colonize the lumen of the gut (Kamada et al, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call