Abstract
In order to enhance the thermal conductivity of aluminum nitride (AlN) with sintering additives including yttria (Y2O3), it is necessary to form yttrium aluminate garnet (YAG) and secondary phases both within and around the boundaries of AIN drains. Nano-sized porous AlN particles were produced to form YAG and secondary phases within AlN grains, after which a AlN–Y2O3 nano–nano composite was formed from AlN and amorphous Y2O3. Porous AlN powders were first successfully synthesized by the chemical vapor synthesis (CVS) method. Highly crystalline and nano-sized porous AlN powders were synthesized at 1,200 °C. Brunauer–Emmett–Teller (BET) analysis showed that these powders had very large surface areas, suggesting that the particles approached nano-scale sizes with very small pores. To form composites of Y2O3 and AlN, we prepared a yttrium source solution that infiltrated the nano-sized pores of the AlN particles. Such an infiltration of AlN with amorphous Y2O3 was expected to effectively reduce the residual oxygen content by facilitating the formation of YAG and secondary phases during the sintering process. We characterized the composite powders of AlN–Y2O3 and the sintered bodies using BET, XRD, SEM, TEM, and thermal conductivity analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.