Abstract

Adenoviral vectors infect cells through the binding of capsid proteins to cell-surface receptors. The ubiquitous expression of adenoviral receptors in human tissues represents an obstacle toward the development of systemically deliverable vectors for cancer therapy, since effective therapy may require delivery to specific sites. For these reasons, major efforts are directed toward the elimination of the native tropism combined with identification of ligands that bind to tumor-specific cell-surface proteins. Highthroughput technologies have identified potential targeting ligands, which need to be evaluated for their ability to retarget adenovirus to alternative receptors. Here, we present a strategy that permits the routine analysis of adenoviral targeting ligands. We use intein-mediated protein ligation as a means to produce functional biological molecules, that is, adenoviral targeting molecules that function as adapters between cellular receptors and the adenovirus fiber protein. We demonstrate the versatility of the present system by conjugating targeting ligands that differ in size and nature including an apolipoprotein E synthetic peptide, the basic fibroblast growth factor and folic acid. The resulting adenoviral targeting molecules mediate adenoviral gene delivery in cells that express the corresponding receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call