Abstract

The process of suspension polymerization was utilized to create acrylate resin microspheres with mesh numbers of 140-200μm and particle sizes of 100μm for implementation in mesh coating technology. The copolymer of methyl methacrylate (MMA) and methyl acrylate (MA) served as the primary polymer, with dibenzoyl peroxide (DBPO) functioning as the initiator, and a mixture of calcium carbonate and deionized water served as the dispersion medium. The surface morphology of the synthesized microspheres was analyzed through Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) to confirm successful synthesis. The optimal reaction conditions for the synthesis of these microspheres were determined to be a dispersant dosage of 30g of calcium carbonate with a monomer ratio of 4:1, a reaction time of 1h, an initiator dosage of 1.2g of BPO, and a reaction temperature of approximately 75-80C, resulting in microspheres with a regular spherical shape and smooth surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.