Abstract

This paper explores the feasibility of functionalizing mango stones with iron oxide magnetic nanoparticles (MS-Fe3O4) by coprecipitation in batch adsorption processes. The synthesized material was characterized and applied in chloroquine (CQN) and sertraline hydrochloride (SER) removal from contaminated waters. The biosorbent was subjected to a regenerative study and treatment using a synthetic mixture of contaminants to evaluate its applicability in real effluents. The biosorbent was analyzed by transmission electron microscopy images, scanning electron microscopy, dispersive X-ray spectroscopy, Fourier transform infrared spectra, and zeta potential to characterize its chemical and morphology properties. The techniques applied showed the effectiveness of the proposed modification. In the adsorption experiments, the optimal adsorbent dosage was 0.01 g for both contaminants. The pH strongly influenced the adsorption of the drugs on MS-Fe3O4, and the best results were obtained in the pH range of 5–6. Kinetic data showed a better fit to the pseudo-second-order model, and the equilibrium time was achieved in 16 h for CQN and 4 h for SER. Isotherm studies revealed maximum adsorptive capacities of 49.42 and 64.79 mg g−1, respectively, for CQN and SER, at 318 K, demonstrating that the increase in temperature is a favorable factor, and the Sips model better describes the process. The thermodynamic parameters indicate an endothermic (ΔH° >0), spontaneous (ΔG° <0), and reversible (ΔS° >0) nature of the adsorption. This process is essentially governed by physical forces, such as hydrogen and π-π bonds. However, it is also valid to consider the presence of electrostatic forces due to the ionizing nature of CQN and SER. The MS-Fe3O4 biosorbent showed good performance when evaluated in a synthetic mixture of four contaminants, with an overall removal efficiency of approximately 86% and the regenerative capacity of three reusing cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.