Abstract

ABSTRACTA novel flame retardant (NSiB) containing nitrogen, silicon and boron was synthesized through reacting of N-(β-aminoethyl)-γ-aminopropyl trimethoxy-silane (KH-792) and boric acid. The structure of NSiB was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS). The effects of NSiB on the flame retardancy and thermal behaviors of polypropylene (PP)/polyethylene vinyl acetate (EVA) blends were investigated by limiting oxygen index value (LOI), vertical burning tests (UL-94) and thermal gravimetric analysis tests (TGA). The results showed that the flame retardancy and thermal stability of PP/EVA blends were improved with the addition of NSiB. When 7.5 wt% DOPO (phosphaphenanthrene) and 0.5 wt% NSiB were incorporated, the LOI value of the PP/EVA blends was 26.9%, and the class V-0 of UL-94 test was passed, as compared to the LOI value of 22.4% and class V-2 of UL-94 test for 8.0 wt% DOPO only and 16.7% and fail, respectively, for the PP/EVA blends alone. The char structure observed by SEM indicated that the surface of the char for the PP/EVA/7.5 wt% DOPO/0.5 wt% NSiB blends had a denser and continuous char structure when compared with that of the PP/EVA blends and PP/EVA/8.0 wt% DOPO blends. These results indicated that there was a good synergistic effect for NSiB and DOPO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.