Abstract

The synthesis of a novel conjugated polymer containing fused pyridinium units in its main chain is reported. A precursor polymer possessing pyridine and tetrafluorophenylene moieties was reacted in the presence of Lewis acid additives to promote the intramolecular nucleophilic aromatic substitution (SNAr) reaction. The polymer reaction with BE3-OEt2 gave a product polymer soluble in polar organic solvents, and the successful formation of fused pyridinium ring structures was spectroscopically confirmed. The electrochemical and optical properties of the synthesized polymers were also investigated, suggesting that the polymer product has a narrower band gap than the precursor polymer. The synthesis of a novel conjugated polymer containing fused pyridinium units in its main chain is reported. A precursor polymer possessing pyridine and tetrafluorophenylene moieties was reacted in the presence of Lewis acid additives to promote the intramolecular nucleophilic aromatic substitution (SNAr) reaction. The polymer reaction with BE3-OEt2 gave a product polymer soluble in polar organic solvents, and the successful formation of fused pyridinium ring structures was spectroscopically confirmed. The electrochemical and optical properties of the synthesized polymers were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.