Abstract

AbstractBarbituric acids mono-substituted at the 5-position show keto–enol tautomerism. In the keto form, conjugation to an aryl substituent is interrupted due to the sp³-hybridized carbon atom at the 5-position of barbituric acid. The enol form generates a conjugated π-system to the aryl substituent and acts as an electron-donating group. If the aryl substituent is electron-deficient, a push-pull system is generated that shows typical UV/Vis absorption. These types of compounds are difficult to access synthetically due to their intrinsic convertibility. The synthesis of barbituric acids with a 4-formylphenyl functionality at the 5-position is reported. This compound, 5-(4-formylphenyl)barbituric acid, could be used to introduce extended π-systems with electron-withdrawing groups in great variety by simple condensation reactions. We demonstrate this by a Horner–Wadsworth–Emmons reaction that forms the enolizable dye (E)-5-(4-(4-nitrostyryl)phenyl)barbituric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.