Abstract

The current study shows the dramatic effect of an electric field (EF) and use of nanosized cryomilled grains on accelerating sintering kinetics during spark plasma sintering of blended elemental powder compacts of Ti53Al47 targeted to produce γ-TiAl intermetallic compounds. The EF had the dominating effect since it reduced the activation barrier for diffusion through Al3Ti leading to faster growth of Al3Ti; the precursor to γ-TiAl. The Avrami exponent (n) determined for the micrograin compact lies between 1.0 and 1.5, which indicates that reaction sintering is controlled by bulk diffusion in these compacts, while for cryomilled compacts this is between 0.7 and 1.0 suggesting the important role of dislocations and grain boundaries on the transformation during reaction sintering. The activation energies were found to be in increasing order as: cryomilled compacts with EF (182 kJ/mol); micrograin compacts with EF (290 kJ/mol); cryomilled compacts without EF (331 kJ/mol); and micrograin compacts without EF (379 kJ/mol). The cryomilled microstructure also enhanced the sintering kinetics because of the availability of faster diffusing paths in Al and Ti including larger grain boundary area and dislocation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.