Abstract

Quinazolines were surveyed as biologically relevant moieties against different cancer cell lines, so in the present study, we analyzed novel derivatives as target-oriented chemotherapeutic anti-cancer drugs. A series of 3-substituted 2-thioxo-2,3-dihydro-1H-quinazolin-4-ones 4a-e were synthesized via the reaction of 2-aminobenzoic acid (1) with isothiocyanate derivatives 2a-e. S-alkylation and S-glycosylation were carried via the reaction of 4a-e with alkyl halides and α-glycopyranosyl bromides 7a,b under anhydrous alkaline and glycoside conditions, respectively. The S-alkylated and S-glycosylated structures, and not that of the N-alkylated and N-glycosylated isomers, have been selected for the products. Conformational analysis has been studied by homo- and heteronuclear two-dimensional NMR methods (DQF-COSY, HMQC, and HMBC). The S site of alkylation and glycosylation were determined from the 1H, 13C heteronuclear multiple-quantum coherence (HMQC) experiments. All derivatives were subjected to molecular docking calculations, which selected some derivatives (5n, 8c, 8g, 9c, and 9a) as promising ones based on their excellent binding affinities towards the EGFR tyrosine kinase molecular target. The in vitro cytotoxic activity against MCF-7 and HepG2 cell lines showed effective anti-proliferative activity of the analyzed derivatives with lower IC50 values especially 9a with IC50 = 2.09 and 2.08 μM against MCF-7 and HepG2, respectively, and their treatments were safe against the normal cell line Gingival mesenchymal stem cells (GMSC). Moreover, RT-PCR reaction investigated the apoptotic pathway for the compound 9a, which activated the P53 genes and its related genes. So, further work is recommended for developing it as a chemotherapeutic drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call