Abstract

8-Methyl-2'-deoxyguanosine (8-MedG) was synthesized by reacting dG under the methyl radical generating system and incorporated into oligodeoxynucleotides using phosphoramidite techniques. The site-specifically modified oligodeoxynucleotide containing a single 8-MedG was then used as a template for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo-) Klenow fragment of Escherichia Coli DNA polymerase I and mammalian DNA polymerase alpha. Primer extension catalyzed by the exo- Klenow fragment readily passed the 8-MedG lesion in the template while that catalyzed by pol alpha was retarded opposite the lesion. The fully extended products formed during DNA synthesis were analyzed to quantify the miscoding specificities of 8-MedG. Both DNA polymerases incorporated primarily dCMP, the correct base opposite the lesion, along with small amounts of incorporation of dGMP and dAMP. In addition, two-base deletion was observed only when the exo- Klenow fragment was used. The thermodynamic stability of 8-MedG in the duplex was also studied. The duplex containing 8-MedG:dG was more thermally and thermodynamically stable than that of dG:dG. The duplex containing 8-MedG:dA was more thermodynamically stable than that of dG:dA. We conclude that 8-MedG is a miscoding lesion and capable of generating G --> C and G --> T transversions and deletion in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.