Abstract

Pyrimidine (6-4) pyrimidone photodimers are major photoproducts that have mutagenic and carcinogenic consequences. One major reason for these biological effects of (6-4) photoproducts may be base mispairing/DNA replication errors due to hydrogen bonding to bases opposite these damaged sites. We synthesized a modified 41-mer DNA containing a (6-4) photoproduct using a preformed building block, then employed it as a template for primer extension reactions catalyzed by Klenow fragment and DNA polymerases alpha, beta and delta (pol alpha, pol beta and pol delta). None of these DNA polymerases were able to bypass the (6-4) photoproduct and elongation terminated at or near the 3'-pyrimidone of the photoproduct, depending on the dNTP concentration. When a single-chain Fv (scFv) with high affinity for the (6-4) photoproduct was included in the polymerization reaction, DNA synthesis was inhibited at base positions four, six, eight or eight nucleotides prior to the 3'-pyrimidone by Klenow fragment, pol alpha, pol beta or pol delta, respectively. These results suggest that the scFv can bind to the template DNA containing a (6-4) photoproduct and inhibit extension reactions by polymerases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.