Abstract

AbstractMagnetic nanoparticles made from organic and inorganic materials have gained significant technological progress and are widely applied in biomedicine, including magnetic resonance imaging, targeted drug delivery systems, biosensors, hyperthermia, and tissue engineering. The most reported synthesis methods include hydrothermal, sol‐gel, laser ablation, microemulsion, and ball‐milling methods. The synthesis parameters have a strong correlation with essential properties, such as phase, size, and surface morphology, which greatly influence the macroscopic properties and potential applications of the particles. Different preparation methods result in magnetic nanoparticles with varying characteristics, and the appropriate method can be chosen based on the requirements of the specific application. Two effective methods for synthesizing magnetic nanoparticles are coprecipitation and hydrothermal method because the preparation is relatively simple with low energy consumption, and uniform and homogeneous crystals are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call