Abstract

To improve the nuclease resistance of siRNA while reducing its induction of an innate immune response and maintaining its biological activity for possible therapeutic application, we designed and synthesized a series of double short hairpin RNAs (dshRNAs). Each dshRNA consisted of two identical short hairpin RNAs (shRNAs) linked at their 3′ ends by glycerol. The dshRNAs were synthesized on a glycerol-derivatized solid support from amidites with 2-cyanoethoxymethyl (CEM) as the 2′-hydroxyl protecting group. Synthesis was carried out in a single run on a DNA/RNA synthesizer, without the need for enzymatic ligation. The dshRNAs showed structure-dependent gene-silencing activity at the protein level, and dshRNAs in which the 3′ end of the two sense regions were linked showed especially high activity. Inclusion of 2′-O-methyluridine residues in the loop region was associated with 1.6- to 2.4-fold lower induction of interferon-α than was siRNA, without loss of gene-silencing activity. dshRNA also showed higher exonuclease resistance than siRNA or canonical shRNA. Our studies provide a new approach to gene silencing based on the concept of linking the 3′ end of the sense regions of two shRNA molecules to form a double shRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.