Abstract

We exploited the fact that leukemic cells utilize significantly higher levels of S-adenosylmethionine (SAMe) than normal lymphocytes and developed tools that selectively diminished their survival under physiologic conditions. Using RNA interference gene silencing technology, we modulated the kinetics of methionine adenosyltransferase-II (MAT-II), which catalyzes SAMe synthesis from ATP and l-Met. Specifically, we silenced the expression of the regulatory MAT-IIbeta subunit in Jurkat cells and accordingly shifted the K(m L-Met) of the enzyme 10-15-fold above the physiologic levels of l-Met, thereby reducing enzyme activity and SAMe pools, inducing excessive apoptosis and diminishing leukemic cell growth in vitro and in vivo. These effects were reversed at unphysiologically high l-Met (>50 microm), indicating that diminished leukemic cell growth at physiologic l-Met levels was a direct result of the increase in MAT-II K(m L-Met) due to MAT-IIbeta ablation and the consequent reduction in SAMe synthesis. In our NOD/Scid IL-2Rgamma(null) humanized mouse model of leukemia, control shRNA-transduced Jurkat cells exhibited heightened engraftment, whereas cells lacking MAT-IIbeta failed to engraft for up to 5 weeks post-transplant. These stark differences in malignant cell survival, effected by MAT-IIbeta ablation, suggest that it may be possible to use this approach to disadvantage leukemic cell survival in vivo with little to no harm to normal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.