Abstract
The structure of the pyridine-based Schiff base compound containing the propargyl group was characterized by NMR spectroscopy. Binding of compound 2 with double-stranded fish sperm DNA (Fsds-DNA) was investigated using viscosity measurement studies and UV/VIS and fluorescence spectral techniques. Binding of compound 2 with Fsds-DNA results in minor hypochromism with no change in absorption maxima and fluorescence quenching with almost no shift in emission maxima, which can be attributed to the groove-binding mode of the interaction. The binding constant was found to be 4.7×104 M-1 . The Fsds-DNA viscosity measurement, KI quenching and NaCl quenching studies and the competitive interaction between compound 2 and ethidium bromide with DNA confirm the proposed binding mode. In addition, interactions between compound 2 and the DNA double helix were analysed by molecular docking study in order to determine the binding mode and binding affinity. As a result of molecular docking, the binding affinity of the 2-DNA complex, which has the most stable conformation -8.10 kcal/mol and it is located in its minor groove. In addition, molecular docking and ADME studies for compound 2 were also performed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have