Abstract

This paper presents a direct synthesis procedure for efficient design of a class of ultra-wideband bandpass filters with composite series and shunt transmission-line stubs. The proposed single-stage bandpass prototype is formed by cascading two sets of series open-ended and shunt short-ended stubs through a multisection nonuniform transmission line. All the stubs are set with an identical electrical length, i.e., thetasc , at lower cutoff frequency fc and the middle connecting line is composed of stepped-impedance transmission line with i sections, and each section has an electrical length thetasc. The proposed filter topology aims to construct an ultra-wide bandpass filter with Chebyshev equal-ripple responses and (i + 3) in-band transmission poles. Based on the derivation of the transfer function, a synthesis approach is established and systematically described to design this type of filters according to the specifications such as lower/upper cutoff frequencies. Next, a multistage bandpass filter prototype is proposed and the synthesis design procedure is also presented. The implementation is achieved by using hybrid microstrip line and slotline sections. Compared with traditional stub filters, the proposed filters achieve higher order transmission zeros and thus provide higher selectivity. As design examples, two single-stage and one three-stage bandpass filters are designed and fabricated to confirm the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.