Abstract

AbstractWell‐defined linear poly(L‐lactide)s with one or two arms (LPLLA and 2LPLLA, respectively) and star‐shaped poly(L‐lactide)s with four or six arms (4sPLLA and 6sPLLA, respectively) were synthesized and then used for the investigation of the thermal properties, isothermal crystallization kinetics, and spherulitic growth. The maximal melting temperature, the cold‐crystallization temperature, and the degree of crystallinity of these poly(L‐lactide) polymers decreased with an increasing number of arms in the macromolecule. Moreover, the isothermal crystallization rate constant (K) of these poly(L‐lactide) polymers decreased in the order of KLPLLA > K2LPLLA > K4sPLLA > K6sPLLA2, which was consistent with the variation trend of the spherulitic growth rate (G). Meanwhile, both K and G of 6sPLLA slightly increased with the increasing molecular weight of the polymer. Furthermore, both LPLLA and 2LPLLA presented spherulites with good morphology and apparent Maltese cross patterns, whereas both unclear Maltese cross patterns and imperfect crystallization were observed for the star‐shaped 4sPLLA and 6sPLLA polymers. These results indicated that both the macromolecular architecture and the molecular weight of the polymer controlled K, G, and the spherulitic morphology of these poly(L‐lactide) polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2226–2236, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.