Abstract

Herein the present article reports the fabrication of ZnO/reduced graphene oxide (ZnG) nanohybrid following a reduction-based process using a non-hazardous material, i.e., ascorbic acid. The morphology, structure, and bonding in the nanohybrid were analyzed using different techniques. Atomic force microscopy and scanning electron microscopy images show spherical particles of ZnO distributed over reduced graphene oxide (rGO). The X-ray diffraction analysis gives calculated values of crystallite size for ZnO as 15.62 nm. The successful incorporation of ZnO nanoparticles into rGO was confirmed using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. The electrochemical studies were performed using an electrolyte (0.5 M H2SO4). The calculated value of specific capacitance for the nanohybrid was 345 Fg-1, which was found to be almost double as compared to that of rGO, which is having a value of only 190.5 Fg-1 at the same scan rate. The nanohybrid also showed excellent capacitance retention after 1,000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.