Abstract

In the present investigation, we focused our interest on the synthesis of pharmacophoric units (quinoline and 1,2,3-triazole) linked through ester (3a-b) and (substituted aromatic ring and 1,2,3-triazole) linked through an ether (3c-h). The synthesis involves multiple sequence of reactions viz. diazotization reaction followed by nucleophilic substitution and finally Cu(I)-catalyzed alkyne azide cycloaddition reaction (CuAAC). The assigned structures of the compound were confirmed by 1H & 13C NMR and mass spectrometry. Prediction of activity spectra for substances (PASS) training set for the synthesized compounds were carried out using PASS software. Interestingly, PASS prediction of the compounds (3a-h) showed that the compounds are more potent as anti-inflammatory (Pa < 0.65) compared to antibacterial (Pa < 0.33) as well as antifungal agents (Pa < 0.35). Furthermore, these compounds were subjected to in silico ADMETox evaluation. All the compounds were found to pass the ADME evaluation and only few compounds passed the predicted toxicity evaluation. This work could be used as an initial approach in identifying potential novel molecules with promising activity and low toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.